Multistep Syntheses

The reactions which have been discussed to this point provide the tools for synthesis of organic compounds. When the synthetic target is a relatively complex molecule, a sequence of such reactions that would lead to the desired product must be devised. At the present time, syntheses requiring 15–20 steps are common, and many that are even longer have been developed. In the planning and execution of such multistep syntheses, an important consideration is the compatibility of the functional groups that are already present in the molecule with the reaction conditions required for subsequent steps. It is frequently necessary to modify a functional group in order to prevent interference with some reaction in the synthetic sequence. One way to do this is by use of a protective group. A protective group is some derivative that can be put in place, and then subsequently removed, in order to prevent such problems. For example, alcohols are often protected as trisubstituted silyl ethers and aldehydes as acetals. The silyl group replaces the labile proton of the hydroxyl group, and the acetal group prevents unwanted nucleophilic additions at an aldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 67.40 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

General References

Protective Groups

Synthetic Equivalent Groups

Synthetic Analysis and Planning

Stereoselective Synthesis

Description of Total Syntheses

  1. N. Anand, J. S. Bindra, and S. Ranganathan, Art in Organic Synthesis, Second Edition, Wiley-Interscience, New York, 1988. Google Scholar
  2. J. Apsimon (ed.), The Total Synthesis of Natural Products, Vols. 1-7, Wiley-Interscience, New York, 1973–1988. Google Scholar
  3. J. S. Bindra and R. Bindra, Creativity in Organic Synthesis, Academic Press, New York, 1975. Google Scholar
  4. S. Danishefsky and S. E. Danishefsky, Progress in Total Synthesis, Meredith, New York, 1971. Google Scholar
  5. I. Fleming, Selected Organic Syntheses, Wiley-Interscience, New York, 1973. Google Scholar
  6. E. J. Corey, J.-L. Gras, and P. Ulrich, Tetrahedron Lett., 809 (1976). Google Scholar
  7. K. C. Nicolaou, S. P. Seitz, and M. R. Pavia, J. Am. Chem. Soc. 103, 1222 (1981). ArticleCASGoogle Scholar
  8. E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc. 94, 6190 (1972). ArticleCASGoogle Scholar
  9. H. H. Meyer, Justus Liebigs Ann. Chem., 732 (1977). Google Scholar
  10. M. Miyashita, A. Yoshikoshi, and P. A. Grieco, J. Org. Chem. 42, 3772 (1977). ArticleCASGoogle Scholar
  11. E. J. Corey, L. O. Wiegel, D. Floyd, and M. G. Bock, J. Am. Chem. Soc100, 2916 (1978). ArticleCASGoogle Scholar
  12. A. M. Felix, E. P. Heimer, T. J. Lambros, C. Tzougraki, and J. Meienhofer, J. Org. Chem. 43, 4194 (1978). ArticleCASGoogle Scholar
  13. P. N. Confalone, G. Pizzolato, E. G. Baggiolini, D. Lollar, and M. R. Uskokovic, J. Am. Chem. Soc. 97, 5936 (1975). ArticleCASGoogle Scholar
  14. A. B. Foster, J. Lehmann, and M. Stacey, J. Chem. Soc, 4649 (1961). Google Scholar
  15. D. M. Simonovic, A. S. Rao, and S. C. Bhattacharyya, Tetrahedron19, 1061 (1963). ArticleCASGoogle Scholar
  16. R. E. Ireland and L. N. Mander, J. Org. Chem. 32, 689 (1967). ArticleCASGoogle Scholar
  17. G. Büchi, W. D. MacLeod, Jr., and J. Padilla, J. Am. Chem. Soc. 86, 4438 (1964). ArticleGoogle Scholar
  18. P. Doyle, I. R. Maclean, W. Parker, and R. A. Raphael, Proc. Chem. Soc, 239 (1963). Google Scholar
  19. J. C. Sheehan and K. R. Henry-Logan, J. Am. Chem. Soc84, 2983 (1962). ArticleCASGoogle Scholar
  20. E. J. Corey, M. Ohno, R. B. Mitra, and P. A. Vatakencherry, J. Am. Chem. Soc86, 478 (1964). ArticleCASGoogle Scholar
  21. B. ElAmin, G. M. Anantharamaiah, G. P. Royer, and G. E. Means, J. Org. Chem. 44, 3442 (1979). ArticleCASGoogle Scholar
  22. B. Moreay, S. Lavielle, and A. Marquet, Tetrahedron Lett., 2591 (1977); B. C. Laguzza and B. Ganem, Tetrahedron Lett., 1483 (1981). Google Scholar
  23. J. I. Seeman, Synthesis, 498 (1977); D. Spitzner, Synthesis, 242 (1977). Google Scholar
  24. H. J. Anderson and J. K. Groves, Tetrahedron Lett., 3165 (1971). Google Scholar
  25. T. Hylton and V. Boekelheide, J. Am. Chem. Soc90, 6987 (1968). ArticleGoogle Scholar
  26. B. W. Erickson, Org. Synth. 53, 189 (1973). Google Scholar
  27. H. Paulsen, V. Sinnwell, and P. Stadler, Angew. Dhem. Int. Ed. Engl. 11, 149 (1972). ArticleCASGoogle Scholar
  28. S. Torii, K. Uneyama, and M. Isihara, J. Org. Chem. 39, 3645 (1974). ArticleCASGoogle Scholar
  29. J. A. Marshall and A. E. Greene, J. Org. Chem. 36, 2035 (1971). ArticleCASGoogle Scholar
  30. E. Leete, M. R. Chedekel, and G. B. Bodem, J. Org. Chem. 37, 4465 (1972). ArticleCASGoogle Scholar
  31. H. Yamamoto and H. L. Sham, J. Am. Chem. Soc. 101, 1609 (1979). ArticleCASGoogle Scholar
  32. K. Deuchert, U. Hertenstein, S. Hünig, and G. Wehner, Chem. her. 112, 2045 (1979). CASGoogle Scholar
  33. T. Takahashi, K. Kitamura, and J. Tsuji, Tetrahedron Lett. 24, 4695 (1983). ArticleCASGoogle Scholar
  34. S. Danishefsky and T. Kitahara, J. Am. Chem. Soc. 96, 7807 (1974). ArticleCASGoogle Scholar
  35. P. S. Wharton, C. E. Sundin, D. W. Johnson, and H. C. Kluender, J. Org. Chem. 37, 34 (1972). ArticleCASGoogle Scholar
  36. E. J. Corey, B. W. Erickson, and R. Noyori, J. Am. Chem. Soc93, 1724 (1971). ArticleCASGoogle Scholar
  37. R. E. Ireland and J. A. Marshall, J. Org. Chem. 27, 1615 (1962). ArticleCASGoogle Scholar
  38. W. S. Johnson, T. J. Brocksom, P. Loew, D. H. Rich, L. Werthemann, R. A. Arnold, T. Li, and D. J. Faulkner, J. Am. Chem. Soc. 92, 4463 (1970). ArticleCASGoogle Scholar
  39. L. Birladeanu, T. Hanafusa, and S. Winstein, J. Am. Chem. Soc. 88, 2315 (1966); T. Hanafusa, L. Birladeanu, and S. Winstein, J. Am. Chem. Soc87, 3510 (1965). ArticleCASGoogle Scholar
  40. A. B. Smith III and W. C. Agosta, J. Am. Chem. Soc. 96, 3289 (1974). ArticleCASGoogle Scholar
  41. R. S. Cooke and U. H. Andrews, J. Am. Chem. Soc96, 2974 (1974). ArticleCASGoogle Scholar
  42. L. A. Hulshof and H. Wynberg, J. Am. Chem. Soc96, 2191 (1974). ArticleGoogle Scholar
  43. S. D. Burke, C. W. Murtiashaw, M. S. Dike, S. M. S. Strickland, and J. O. Saunders, J. Org. Cyem. 46, 2400 (1981). ArticleCASGoogle Scholar
  44. K. C. Nicolaou, M. R. Pavia, and S. P. Seitz, J. Am. Chem. Soc. 103, 1224 (1981). ArticleCASGoogle Scholar
  45. E. M. Acton, R. N. Goerner, H. S. Uh, K. J. Ryan, D. W. Henry, C. E. Cass, and G. A. LePage, J. Med. Chem. 22, 518 (1979). ArticleCASGoogle Scholar
  46. E. G. Gros, Carbohydr. Res. 2, 56 (1966). ArticleCASGoogle Scholar
  47. S. Hanessian and G. Rancourt, Can. J. Chem. 55, 1111 (1977). ArticleCASGoogle Scholar
  48. R. R. Schmidt and A. Gohl, Chem. Ber. 112, 1689 (1979). ArticleCASGoogle Scholar
  49. S. F. Martin and T. Chou, J. Org. Chem. 43, 1027 (1978). ArticleCASGoogle Scholar
  50. W. C. Still and M.-Y. Tsai, J. Am. Chem. Soc. 102, 3654 (1980). ArticleCASGoogle Scholar
  51. J. C. Bottaro and G. A. Berchtold, J. Org. Chem. 45, 1176 (1980). ArticleCASGoogle Scholar
  52. A. S. Kende and T. P. Demuth, Tetrahedron Lett., 715 (1980). Google Scholar
  53. J. A. Marshall and P. G. M. Wuts, J. Org. Chem. 43, 1086 (1978). ArticleCASGoogle Scholar
  54. R. Bonjouklian and R. A. Rüden, J. Org. Chem. 42, 4095 (1977). ArticleCASGoogle Scholar
  55. L. A. Paquette, R. E. Moerck, B. Harirchian, and P. D. Magnus, J. Am. Chem. Soc100, 1597 (1978). ArticleCASGoogle Scholar
  56. P. S. Wharton, C. E. Sundin, D. W. Johnson, and H. C. Kluender, J. Org. Chem. 37, 34 (1972). ArticleCASGoogle Scholar
  57. S. Danishefsky, T. Kitahara, C. F. Yan, and J. Morris, J. Am. Chem. Soc101, 6996 (1979). ArticleCASGoogle Scholar
  58. B. M. Trost, J. Ippen, and W. C. Vladuchick, J. Am. Chem. Soc. 99, 8116 (1977). ArticleCASGoogle Scholar
  59. E. J. Corey, E. J. Trybulski, L. S. Melvin, Jr., K. C. Nicolaou, J. A. Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle, M. F. Haslanger, S. Kim, and S. Yoo, J. Am. Chem. Soc100, 4618 (1978). ArticleCASGoogle Scholar
  60. K. G. Paul, F. Johnson, and D. Favara, J. Am. Chem. Soc. 98, 1285 (1976). ArticleCASGoogle Scholar
  61. P.N. Confalone, G. Pizzolato, E. G. Baggiolini, D. Lollar, and M. R. Uskokovic, J. Am. Chem. Soc. 97, 5936 (1975). ArticleCASGoogle Scholar
  62. E. Baer, J. M. Grosheintz, and H. O. L. Fischer, J. Am. Chem. Soc. 61, 2607 (1939). ArticleCASGoogle Scholar
  63. J. L. Coke and A. B. Richon, J. Org. Chem. 41, 3516 (1976). ArticleCASGoogle Scholar
  64. J. R. Dyer, W. E. McGonigal, and K. C. Rice, J. Am. Chem. Soc. 87, 654 (1965). ArticleCASGoogle Scholar
  65. E. J. Corey and S. Nozoe, J. Am. Chem. Soc. 85, 3527 (1963). ArticleCASGoogle Scholar
  66. R. Jacobson, R. J. Taylor, H. J. Williams, and L. R. Smith, J. Org. Chem. 47, 3140 (1982). ArticleCASGoogle Scholar
  67. R. B. Miller and E. S. Behare, J. Am. Chem. Soc. 96, 8102 (1974). ArticleCASGoogle Scholar
  68. S. Iwaki, S. Marumo, T. Saito, M. Yamada, and K. Katagiri, J. Am. Chem. Soc. 96, 7842 (1974). ArticleCASGoogle Scholar
  69. G. Büchi, W. Hofheinz, and J. V. Paukstelis, J. Am. Chem. Soc. 91, 6473 (1969). ArticleGoogle Scholar
  70. M. Brown, J. Org. Chem. 33, 162 (1968). ArticleCASGoogle Scholar
  71. E. J. Corey, R. B. Mitra, and H. Uda, J. Am. Chem. Soc. 86, 485 (1964). ArticleCASGoogle Scholar
  72. I. Fleming, Selected Organic Syntheses, Wiley, London, 1973, pp. 3-6; J. E. McMurry and J. Melton, J. Am. Chem. Soc. 93, 5309 (1971). Google Scholar
  73. R. M. Coates and J. E. Shaw, J. Am. Chem. Soc. 92, 5657 (1970). ArticleCASGoogle Scholar
  74. T. F. Buckley III and H. Rapoport, J. Am. Chem. 102, 3056 (1980). ArticleCASGoogle Scholar
  75. D. A. Evans, A. M. Golob, N. S. Mandel, and G. S. Mandel, J. Am. Chem. Soc. 100, 8170 (1978). ArticleCASGoogle Scholar
  76. E. J. Corey and R. D. Balanson, J. Am. Chem. Soc. 96, 6516 (1974). ArticleCASGoogle Scholar
  77. J. L. Herrmann, M. H. Berger, and R. H. Schlessinger, J. Am. Chem. Soc. 95, 7923 (1973). ArticleCASGoogle Scholar
  78. R. F. Romanet and R. H. Schlessinger, J. Am. Chem. Soc. 96, 3701 (1974); R. A. LeMahieu, M. Carson, and R. W. Kierstead, J. Org. Chem. 33, 3660 (1968); G. Büchi, D. Minster, and J. C. F. Young, J. Am. Chem. Soc. 93, 4319 (1971). ArticleCASGoogle Scholar
  79. J. H. Babler, D. O. Olsen, and W. H. Arnold, J. Org. Chem. 39, 1656 (1974); R. J. Crawford, W. F. Erman, and C. D. Broaddus, J. Am. Chem. Soc. 94, 4298 (1972). ArticleCASGoogle Scholar
  80. C. S. Subramanian, P. J. Thomas, V. R. Mamdapur, and M. S. Chandra, J. Chem. Soc, Perkin Trans. 1, 2346 (1979). Google Scholar
  81. S. Hanessian and R. Frenette, Tetrahedron Lett., 3391 (1979). Google Scholar
  82. E. Piers, R. W. Britton, and W. de Waal, J. Am. Chem. Soc. 93, 5113 (1971); K. J. Schmalzl and R. N. Mirrington, Tetrahedron Lett., 3219 (1970); N. Fukamiya, M. Kato, and A. Yoshikoshi, J. Chem. Soc, Chem. Commun., 1120 (1971); G. Frater, Helv. Chim. Acta 57, pp172 (1974); K. Yamada, Y. Kyotani, S. Manabe, and M. Suzuki, Tetrahedron 35, 93 (1979); M. E. Jung, C. A. McCombs, Y. Takeda, and Y. G. Pan, J. Am. Chem. Soc. 103, 6677 (1981); S. C. Welch, J. M. Gruber, and P. A. Morrison, J. Org. Chem. 50, pp2676 (1985); S. C. Welch, C. Chou, J. M. Gruber, and J. M. Assercq, J. Org. Chem. 50, 2668 (1985); H. Hagaiwara, A. Okano, and H. Uda, J. Chem. Soc, Chem. Commun., 1047 (1985); G. Stork and N. H. Baird, Tetrahedron Lett. 26, 5927 (1985). ArticleCASGoogle Scholar
  83. E. J. Corey and R. H. Wollenberg, Tetrahedron Lett., 4705 (1976); R. Baudouy, P. Crabbe, A. E. Greene, C. LeDrain, and A. F. Orr, Tetrahedron Lett., 2973 (1977); A. E. Greene, C. LeDrian, and P. Crabbe, J. Am. Chem. Soc102, 7583 (1980); P. A. Bartlett and F. R. Green, J. Am. Chem. Soc100, 4858 (1978); T. Kitahara, K. Mori, and M. Matsui, Tetrahedron Lett., 3021 (1979); Y. Köksal, P. Raddatz, and E. Winterfeldt, Angew. Chem. Int. Ed. Engl. 19, pp472 (1980); K. H. Marx, P. Raddatz, and E. Winterfeldt, Justus Liebigs Ann. Chem., 474 (1984); C. LeDrain and A. E. Green, J. Am. Chem. Soc104, 5473 (1982); T. Kitahara and K. Mori, Tetrahedron40, 2935 (1984); K. Nakatani and S. Isoe, Tetrahedron Lett. 26, 2209 (1985); B. M. Trost and S. M. Mignani, Tetrahedron Lett. 27, pp4137 (1986); B. M. Trost, J. Lunch, P. Renault, and D. H. Steinman, J. Am. Chem. Soc. 108, 284 (1986). ArticleGoogle Scholar
  84. S. Danishefsky, M. Hirama, K. Gombatz, T. Harayam, E. Berman, and P. F. Schuda, J. Am. Chem. Soc101, 7020 (1979); W. H. Parsons, R. H. Schlessinger, and M. L. Quesada, J. Am. Chem. Soc102, 889 (1980); S. D. Burke, C. W. Murtiashaw, J. O. Saunders, and M. S. Dike, J. Am. Chem. Soc. 104, 872 (1982); L. A. Paquette, G. D. Amis, and H. Schostarez, J. Am. Chem. Soc. 104, 6646 (1982); M. C. Pirrung and S. A. Thompson, J. Org. Chem. 53, 227 (1988); T. Ohtsuka, H. Shirahama, and T. Matsumoto, Tetrahedron Lett. 21, 3851 (1983); D. E. Cane and P. J. Thomas, J. Am. Chem. Soc. 106, 5295 (1984); D. F. Taber and J. L. Schuchardt, J. Am. Chem. Soc107, 5289 (1985). ArticleCASGoogle Scholar
  85. R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc. 98, 2568 (1976). Google Scholar
  86. W. A. Kleschick, C. T. Buse, and C. H. Heathcock, J. Am. Chem. Soc. 99, 247 (1977); P. Fellmann and J. E. Dubois, Tetrahedron34, 1349 (1978). ArticleCASGoogle Scholar
  87. B. M. Trost, S. A. Godleski, and J. P. Genet, J. Am. Chem. Soc. 100, 3930 (1978). ArticleCASGoogle Scholar
  88. M. Mousseron, M. Mousseron, J. Neyrolles, and Y. Beziat, Bull. Chim. Soc. Fr., 1483 (1963); Y. Beziat and M. Mousseron-Canet, Bull. Chim. Soc. Fr., 1187 (1968). Google Scholar
  89. G. Stork and V. Nair, J. Am. Chem. Soc. 101, 1315 (1979). ArticleCASGoogle Scholar
  90. R. D. Cooper, V. B. Jigajimmi, and R. H. Wightman, Tetrahedron Lett. 25, 5215 (1984). ArticleCASGoogle Scholar
  91. C. E. Adams, F. J. Walker, and K. B. Sharpless, J. Org. Chem. 50, 420 (1985). ArticleCASGoogle Scholar
  92. G. Grethe, J. Sereno, T. H. Williams, and M. R. Uskokovic, J. Org. Chem. 48, 5315 (1983). ArticleCASGoogle Scholar
  93. H. Ahlbrect, G. Bonnet, D. Enders, and G. Zimmermann, Tetrahedron Lett., 3175 (1980). Google Scholar
  94. A. I. Meyers, G. Knaus, K. Kamata, and M. E. Ford, J. Am. Chem. Soc. 98, 567 (1976). ArticleCASGoogle Scholar
  95. S. Hashimoto and K. Koga, Tetrahedron Lett., 573 (1978). Google Scholar
  96. A. I. Meyers and J. Slade, J. Org. Chem. 45, 2785 (1980). ArticleCASGoogle Scholar
  97. S. Terashima, M. Hayashi, and K. Koga, Tetrahedron Lett., 2733 (1980). Google Scholar
  98. B. M. Trost, D. O’Krongly, and J. L. Balletire, J. Am. Chem. Soc. 102, 7595 (1980). ArticleCASGoogle Scholar
  99. A. I. Meyers, R. K. Smith, and C. E. Whitten, J. Org. Chem. 44, 2250 (1979). ArticleCASGoogle Scholar

Author information

Authors and Affiliations

  1. University of Virginia, Charlottesville, Virginia, USA Francis A. Carey & Richard J. Sundberg
  1. Francis A. Carey